

Pergamon

clCM&4o39(94)01497-3

Diastereo- and Enantioselective Syntheses of (-)-Coniine, **(-)-Solenopsiu A, (-)-Solenopsis fbgax venom and (-)-Xenovenine via Deoxygenative Decarboxylation of 2-Carbonylsultam-Substituted N-Hydroxy-Piperidines and -Pyrrolidines l)**

Wolfgang Oppolzer^{*}, Christian G. Bochet and Eric Merifield

Départment de Chimie Organique, Université de Genève, CH-1211 Genève 4, Switzerland

Abstract: Heating cyclic 2-carbonylsultam-substituted IV-hydroxyiamines 4 with NaH yields sultam auxiliary 8 and imines 10, which are trapped in situ either by i-Bu₂AlH or organocerium reagents to give **enantiomerically pure 2-mono- or rrons-2,6(2,5)-disubstituted piperidines (pyrrolidines) 11 or 12.**

During the last years, increasing attention has been paid to the construction of piperidine and pyrrolidine alkaloids in enantiomerically pure form. 2) In this context, we have recently reported the use of **chiral cyclic nitrones 3 and ent-3 as key intermediates for the syntheses of (-)-pinidine (5) 3) and (-)** allosedamine (6) , ⁴ respectively (Scheme 1).

We present here an extension of this strategy based on the ready availability of N-hydroxy-piperidines or -pyrrolidines 4 by diastereoselective reduction of nitrones 3 which, in turn, were prepared by asymmetric electrophilic α -hydroxyamination ⁵) of chiral N-($\epsilon/6$ -ketoacyl)sultam acetals 1⁶) (Table 1).

Table 1: **Conversion of Chiral N-(c/6-Ketoacyl)sultam Acetals into N-Hydroxy-Piperidines and -Pyrrolidines:** $1 \rightarrow 3 \rightarrow 4$.

	Series Ring Size	R ¹ $n - C_{11}H_{23}$	Yield $(\%)$ of Nitrone 3	Reducing Agent	Yield $(\%)$ of Hydroxylamine 4	
а	$n=2$		70	H_2 , Pd/C	90	
ь	$n=2$	$n - C_3H_7$	72	H_2 , Pd/C	92	
c	$n = 1$	$n - C_7H_{15}$ 64		NaCNBH ₂	97	

Hence, successive treatment of acylsultams 1 with sodium hexamethyldisilazide, I **-chloro-l**nitrosocyclohexane and $1\underline{N}$ aq. HCl ³) provided the expected diastereomerically pure nitrones 3 ⁹) in 64 to **72% yield (Table I). Palladium catalyzed hydrogenation of the C,N double bond in 3a and 3b took place** from the less hindered face 3) giving the cis-2,6-disubstituted N-hydroxypiperidines $4a$ 9) and $4b$ 9) as single stereoisomers (90 and 92%); only 5% of N.O-hydrogenolysis was observed. Reduction of **trihydropyrrol-N-oxide 3c did not take place under these conditions, but proceeded readily with sodium** cyanoborohydride (1.2 mol-equiv.) in MeOH at pH= 3 yielding N-hydroxypyrrolidine 4c ⁹) (97%).

With key precursors 4 in hand, we pursued the idea of removing the acylsultam substituent with simultaneous N,O-cleavage (Scheme 2). Although unprecedented, it seemed plausible that an internal 'transesterification' $7 \rightarrow 9$ (with recovery of auxiliary 8) followed by a spontaneous decarboxylation of **transient oxaaetidin-4-one 9 would lead to cyclic imines 18. lo)** Hydride or **organometal additions to the non-isolated imines 10 could piperidines/pyrrolidines 11 or 12.** *Scheme 2* **yield C(Z)-monosubstituted or C(2.6)/C(2.5)-disubstituted**

Indeed, heating a 0.02 M solution of N-hydroxypiperidine 4a in toluene with NaH (2 mol-equiv.) under Ar at reflux for 2 h, followed by stirring of the reaction mixture with i -Bu₂AlH (1.4 mol-equiv.) at 0°C for 2 h, addition of sat. aq. NH₄Cl, extraction (AcOEt) and flash chromatography (FC) provided sultam 8 (90%) and the more polar piperidine 11a (68%, $[\alpha]_D = -2.13$ (c=1, CHCl₃), Table 2, entry 1).

Table 2: Deoxygenative Decarboxylation of Cyclic 2-Carbonylsultam-Substituted N-Hydroxylamines / Imine **Trapping:** $4 \rightarrow 8 + 10 \rightarrow 11$ **or 12**

$N - Hy$ droxy lamine					Piperidine/Pyrrolidine					
Entry		Ring Size R ¹		Trapping Agent	Yield $(\%)$ Sultam ₈	Ratio trans/cis		R^2	Yield (%) from 4	
	42		$n=2$ $n-C_{11}H_{23}$	<i>i</i> -Bu ₂ AlH	90	$\frac{1}{2}$	11a	٠	68	
2	4b		$n=2$ $n-C_3H_7$	i -Bu ₂ AlH	83	$\overline{}$	11 _b	\blacksquare	56	
3	4a		$n=2$ $n-C_{11}H_{23}$	Meli/CeCl ₃	80	>99:1	12a	CH ₃	54	
4	4c		$n=1$ $n-C_7H_1$	<i>i</i> -Bu ₂ AlH	93	\bullet	11c	$\overline{}$	64	
5	4c		$n=1$ $n-C_7H_{15}$	n -BuLi/CeCl ₃	63	93:7	12c	$n - C_{4}H_{Q}$	60	
6	4с		$n=1$ $n-C_7H_{15}$	$3 - Buteny i MgBr/CeCl3$	79	>99.1	12d	3-Butenyl	48	

To test the intramolecularity of the deoxygenative decarboxylation $4a \rightarrow 10a$, a 0.036 **M** solution of $4a$ in **dg-toluene was deprotonated with NaH (2 mol-equiv.) within a NMR-tube under Ar and the mixture was** heated at 50°C. Monitoring the disappearance of the H_A-signal of sodium salt 7a (6=4.05 ppm, broad d, J=12 Hz), using the residual toluene signals as a reference, indicated clean first-order kinetics, $k_1 = 2.1 \times 10^{-2}$ **min -1.** As **expected, no trace of oxaxetidin-4-one 9a was discernible by these measurements, which, on the** other hand, showed the appearance of a broad singlet at δ =7.6 ppm corresponding to H_A of imine 10a. This **signal increased to a maximum intensity, which corresponded to only -0.6 H, probably due to a partial trimerization/polymetization of the imine.**

Subjecting hydroxylamine 4b to slightly modified reaction conditions. furnished the hydrochloride of the hemlock alkaloid (-)-coniine (11b), ¹¹) conveniently separated from sultam 8 by extraction (from CH₂Cl₂) with aq. HCI. Crystallization (CH₂Cl₂/hexane) provided 11b.HCI (56% from 4b) showing the expected **properties (Figure I). as well as an enantiomeric purity of 99.4% e.e. (by HPLC of its N-3.5-dinitrobenzoyl derivative using the chiral column** *Daicei Chiralpak AD).*

To introduce a carbon substituent at C(2) of imines 10, we envisaged the addition of organocerium reagents, prepared by ultrasonication of CeCl₃/RLi 1:1-mixtures in THF at 0° **. ¹²) Hence, heating Nhydroxypiperidine 4a with NaH, followed by addition of** *in situ* **prepared "MeCeCl2" (IO mol-equiv.) in THF** $(-78^{\circ}, 3 \text{ h}, \text{ then } \rightarrow \text{ r.t., } 16 \text{ h})$ and workup with aq. Na₃EDTA provided the $C(2,6)$ -trans-disubstituted piperidine alkaloid (-)-solenopsin A (12a ¹³⁾, 54% from 4a), identified as its hydrochloride salt (Figure 1). None of its cis-isomer was found in the reaction mixture.

Extension of the "oxazetidin-4-one route" to the flexible preparation of enantiomerically pure pyrrolidines was straightforward (Table 2, entries 4-6). Successive treatment of N-hydroxypyrrolidine 4c with NaH and i -Bu₂AlH afforded (R)-2-heptylpyrrolidine 11c ¹⁴⁾ $[[\alpha]_{D}$ = -15.5 (c=1.16, CHCl₃); lit.¹⁴): -15.7 (CHCl₃), 64% from 4c). Intercepting transient imine 10c with the "n-BuLi/CeCl₃ reagent" (11 molequiv.) furnished (-)-solenopsis fugax venom 12c $\frac{15}{10}$ ([α]_D= -7.5 (c=0.7, MeOH), 60% from 4c), easily separated from its minor (7%) 2,5-cis-isomer (FC) and characterized as its phenylsulfonamide 13 (Figure 1).

Similar addition of the organocerium nucleophile obtained from 3-butenylmagnesium bromide and CeC13 to imine 10c yielded trans-disubstituted pyrrolidine 12d ⁹) $([\alpha]_{D}$ = -4.9 (c=1.6, CH₂Cl₂), 48% from 4c). N-Benzyloxycarbonylation of 12d, Wacker oxidation, stirring of the resulting methyl ketone 14 with H₂/Pd-C **in MeOH (I atm., r.t., 20 h) and removal (FC) of the minor C(S)-epimer of 16 gave the pyrrolixidine alkaloid (-)-xenovenine 15 16) (Scheme 3).**

Further applications and extensions of this novel tandem deoxygenative decarboxylation/imine trapping reaction are presently being explored in our laboratory.

AcknowlcdPements: Financial support of this work by the *Swiss National Science Foundation. Sandoz Phurma* Ltd., Basel and Givaudan-Roure AG, Dubendorf, is gratefully acknowledged. We thank Mr. J. P. Saulnier, *Mr. A. Pinto and Mrs. C. Clément for NMR and MS measurements.*

REFERENCES

- 1) **Presented in part (W.O.) at the 7th FECHEM Conference on Heterocycles in Bio-organic Chemistry, Santiago de Compostela, Sept. 1993.**
- 2) **Reviews: P. Hammann,** *Nuchr. Chem. Tech. Lab. 1990, 38. 342;* **H.-P. Husson,** *J. Nat. Prod. 1985, 48, 894. See also* **references ll) and '3) - 14).**
- 3) **W. Oppolzer, E. Merifield,** *Helv. Chim. Acta 1993, 76, 957.*
- *4) W.* **Oppolzer, J. Deerberg, 0. Tamura,** *Helv. Chin. Acta 1994. 77, 554.*
- *5)* **W. Oppolzer, 0. Tamura, J. Deerberg,** *Helv. Chim. Acfa 1992, 75, 1965.*
- *6)* **N-(c/6-Ketoacyl)sultam acetals 1 were prepared from the corresponding ketoacid methyl esters by** acetalization and Me₃Al-mediated acylation of sultam 8. $\frac{3}{2}$. The ϵ -ketoesters were prepared by NaOMemediated retro-Claisen reaction of 2-acylcyclopentanones ¹) and methyl 5-oxo-dodecanoate was obtained by addition of "n-C₇H₁₅CeCl₂" to δ -valerolactone δ), followed by oxidation with PDC/DMF and **esterification with diazomethane.**
- *7)* **Methanolysis of 2-acylcyclohexanones: C. R. Hauser, F. W. Swamer, B. I. Ringler,** *J. Am.* **Chem. Sot. 1948, 70, 4023.**
- *8)* **B. Mudryk. C. A. Shook, T. Cohen,** *J. Am. Chem. Sot. 1990. 112, 6389.*
- *9)* **All new compounds were characterized by IR, IH-NMR, l3C-NMR, and HRMS.**
- *10)* **For the postulated formation of a transient, spontaneously decarboxylating oxazetidin-4-one by [2+2] cycloaddition of diphenylketene to p-dimethylamino-nitrosobenzene at r.t. see: H. Staudinger, S. Jelagin, Chem.** *Ber.* **1911, 44, 365; R. C. Kerber, M. C. Cann,** *J. Org. Chem. 1974. 39, 2552.*
- *11)* **A 0.016&l solution of 4b in toluene was added dropwise to a suspension of NaH (2.3 mol-equiv.) in toluene at 110' under Ar and the mixture was heated at reflux for 16 h, followed by reduction with i-**Bu₂AIH as described for 4a. Recent asymmetric syntheses of (-)- and (+)- coniine: a) H. Waldmann, M. **Braun.** *J. Org. Chem. 1992, 57, 4444; a)* **D. Enden?. J. Tiebes,** *Liebigs Ann. Chem. 1993. 173; M.* **Amat, N. Llor. J. Bosch,** *Tetrahedron Left. 1994, 35. 2223* **and references mentioned therein.**
- *12)* **E. Ciganek,** *J. Org. Chem. 1992, 57, 4521: N.* Greeves, **L. Lyford,** *Tetrahedron Lett. 1992. 33. 4759:* **c.f. also: S. E. Denmark, J. P. Edwards, 0. Nicaise,** *J. Org. Chem.* **1993, 58, 569.**
- *13)* **Recent asymmetric syntheses of solenopsin A see: a) D. S. Grierson, J. Royer. L. Guerrier, H.-P. Husson,** *J. Org.* **Ckem. 1986,** *51,* **4475; b) D. F. Taber, P. B. Deker, H. M. Fales, T. H. Jones, H. A. Lloyd,** *ibid. 1988, 53, 2968; c) Y.* **Ukaji, T. Watai, T. Sumi, T. Fujisawa,** *Chem. Lett. 1991, 1555:* **d) H. Kotsuki, T. Kusumi. M. Inoue, Y. Ushio, M. Ochi,** *Tetrahedron Lett. 1991, 32, 4159; e)* **C. W. Jefford. J. B. Wang,** *ibid. 1993, 34, 291* **I; f) D. L. Comins, N. R. Benjelloun,** *Tetrahedron Left. 1994, 35, 829* **and references mentioned therein.**
- *14)* **A. I. Meyers, L. E. Burgess,** *J. Org. Chem.* **1991, 56, 2294 and references mentioned therein.**
- 15) The optical rotation and absolute configuration of naturally occurring venom 12c have not been determined: M. S. Blum, T. H. Jones, B. Hölldobler, H. M. Fales, T. Jaouni, Z. Naturwissensch. 1980, *67, 144.* **Recent syntheses of (-)- and (+)-12~: a) K. Shiosaki, H. Rapoport,** *J. Org. Chem.* **1985, 50, 1229: b) S. Arseniyadis, P. Q. Huang, D. Piveteau, H.-P. Husson,** *Tetrahedron 1988. 44, 2457; c) M.* **Skrinjar, L.-G. Wistrand,** *Tetrahedron Lett. 1990, JI. 1775: d)* **H. Takahata, H. Takehara, N. Ohkubo, T. Momose,** *Tetrahedron Asymm. 1990, 1, 561.*
- *16)* **The optical rotation and absolute configuration of naturally occurring xenovenine have not been determined: T. H. Jones, M. S. Blum, H. M. Fales, C. R. Thompson,** *J. Org.* **Chem. 1980, 45. 4778. Recent syntheses of (-)- and (+)-xenovenine:** a) S. **Takano. S. Otaki. K. Ogaaarawa,** *J. Ckem. Sot. Ckem.* **Commun. 1983, 1172; b) S. Arseniyadis, P. Q. Huang, H.-P. Husson,** *Tetrahedron Lett. 1988, 29. 1391; c)* **H. Takahata, H. Bandoh, T. Momose.** *Tetrahedron Asymm. 1991. 2. 351;* **idem,** *J. Org. Chem.* **1992, 57, 4401; d) 0. Provot, J. P. Celerier. H. Petit, G. Lhommet,** *ibid. 1992, 57, 2163; e) C.* Grandjean, S. Rosset, J. P. Célérier, G. Lhommet, *Tetrahedron Lett.* 1993, 34, 4517.

(Received in Germany 25 July 1994; accepted 28 July 1994)