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Abstract: Heating cyclic 2-carbonylsultam-substituted IV-hydroxyiamines 4 with NaH yields sultam auxiliary 
8 and imines 10, which are trapped in situ either by i-Bu2AlH or organocerium reagents to give 
enantiomerically pure 2-mono- or rrons-2,6(2,5)-disubstituted piperidines (pyrrolidines) 11 or 12. 

During the last years, increasing attention has been paid to the construction of piperidine and 
pyrroljd~ne alkaloids in enantiomeric~ly pure form. 2, In this context, we have recently reported the use of 
chiral cyclic nitrones 3 and ent-3 as key intermediates for the syntheses of (-)-pinidine (5) 3) and (-)- 
allosedamine (4). 4, respectively (Scheme I). 

(-,I- A~~~~~~ 6 ~~-~~ne 5 4 

We present here an extension of this strategy based on the ready availability of N-hydroxy-piperidines 
or -pyrrolidines 4 by diastereoselective reduction of nitrones 3 which, in turn, were prepared by asymmetric 
electrophilic a-hydroxyamination 5) of chiral N-(c/6-ketoacyl)sultam acetats 1 @ (Table 1). 

Table 1: Conversion of Chiral N-(c/6-Ketoacyl)sultam Acetals into N-Hydroxy-Piperidines and -Pyrrolidines: 

l-*3-+4. 

Series Ring Size R1 Yield (%) 

of Nitrone 3 

Reducing Agent Yield (%) 

of Hydroxyl~ine 4 

a 

b 

e 

n=2 

n=2 

l&=1 

n-Cl lH23 
n-C3H7 

x-c7Dl5 

70 H2” Pd/C 90 

72 HP Pd/C 92 

64 NaCNBH3 97 

7015 
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Hence, successive treatment of acylsultams 1 with sodium hexamethyldisilazide, I -chloro-l- 
nitrosocyclohcxans and I& aq. HCl 3) provided the expected diastereomerioally pure nitrones 3 9) in 64 to 
72% yield (Table I). Palladium catalyzed hydrogenation of the C,N double bond in 3a and 3b took place 
from the less hindered face 3) 8iving the cis-2.6-disubstituted N-hydroxypiperidines 4a 9) and 4b 9) as 
single stereoisomers (90 and 92%k only 5% of ND-hydrogenolysis was observed. Reduction of 
trihydropyrrol-N-oxide 3c did not take place under these conditions, but proceeded readily with sodium 
cyano~~hyd~de f I .2 mol-eqaiv.) in Me0H at pH= 3 yielding ~-hydrox~~~lidine 4e g, (97%). 

With key precursors 4 in hand, we pursued the idea of removin8 the acytsultam su~tituent with 
sirnul~~~ ND-cleavage (Scheme 2). Aithou8h unpr~ented, it seemed plausible that 813 internal 
‘t~ns~terifi~tion’ 7 + 9 (with recovery of auxiliary 8) followed by a spon~n#us de~r~xyiation of 
transient oxaaetidin-4-one 9 would lead to cyclic imines 18. lo) Hydride or organometal additions to the 
non-isolated imines 10 could 
piperidines/pyrrolidines 11 or 12. 

Scheme 2 

yield C(Z)-monosubstituted or C(2.6)/C(2.5)-disubstituted 

#:R=H 
7:R=Na 

11 10 
H 

12 

Indeed, heating a 0.02 M solution of ZV-hydroxypiperidine 48 in toluene with NaH (2 mol-equiv.) under 
Ar at reflux for 2 h, followed by stirring of the reaction mixture with i-Bu2A1H (1.4 mol-equiv.) at O’C for 
2 h, addition of sat. aq. NH4Cl, extraction (AcOEt) and flash chromatog~phy (FC) provided sultam 8 (90%) 
and the more polar pi~ridine lla (68%, (a]H = -2.13 @=I, CHCl$, Table 2, entry I). 

Tobie 2: Deoxygenative Becarboxylation of Cyclic 2”C~~nylsul~m-Substituted N-Hydroxylamines / Imine 

Trapping: 4 - 8 + 10 -* 11 or 12 

N-Hydroxylamine Piperidine/Pyrrolidine 

Entry Ring Size R1 Trapping Agent Yield (961 Ratio R2 Yield (96) 
Sultam 8 trans/cis from 4 

I da n=2 n-C, lH23 i-Bu2AlH 90 ttr - 68 

2 4b n-2 n-C3H7 i-Bu2AlH 83 lib - 56 

3 4a n=2 n-C, lH23 MeLi/CeC13 SO >99Zl 121 CH3 54 

4 4e n=l n-C7Hl S i-Bu2AlH 93 llc - 64 

5 4c n=l n-C7HlS n-BuLi/CeCl3 63 93:7 12c n-C4Hg 60 

6 4c n-1 n-C7HlS 3-ButenylMgBr/CeC13 79 w99: 1 lfd 3-Butenyl 48 
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To test the intramolecularity of the deoxygenative decarboxylation 48 -+ lOa. a 0.036 M solution of 48 in 

dg-toluene was deprotonated with NaH (2 mol-equiv.) within a NMR-tube under Ar and the mixture was 

heated at 50-C. Monitoring the disappearance of the HA -signal of sodium salt 7a (6r4.05 ppm, broad d. J-12 

Hz), using the residual toluene signals as a reference, indicated clean first-order kinetics, kl = 2.1 x IO-2 

min -1. As expected, no trace of oxaxetidin-4-one 9a was discernible by these measurements, which, on the 

other hand, showed the appearance of a broad singlet at 6=7.6 ppm corresponding to HA of imine 10a. This 

signal increased to a maximum intensity, which corresponded to only -0.6 H, probably due to a partial 

trimerization/polymetization of the imine. 

Subjecting hydroxylamine 4b to slightly modified reaction conditions. furnished the hydrochloride of the 

hemlock alkaloid (-)-coniine (lib). ll) conveniently separated from sultam 8 by extraction (from CH2C12) 

with aq. HCI. Crystallization (CH2C12/hexane) provided llb.HCI (56% from 4b) showing the expected 

properties (Figure I). as well as an enantiomeric purity of 99.4% e.e. (by HPLC of its N-3.5-dinitrobenzoyl 

derivative using the chiral column Daicei Chiralpak AD). 

. Figwe * (-J/ ,L&_*,;~~ _#@“,, 

H R 

(-)-Coniine (11 b.HCI) f-J-Soknoi.sin A (12ZLHCI) R-H: (-)-Solenopsk fugax venom (12~) 

M.p. 208-210’ , lit.“a) 209’ M-p. 148-149’ , lit.‘3’)141-1420 R=S02Ph : 13 

[LX]? = - 9.2, (c=O.8, EtOH) [a]: = - 59.8, (c-0.9, CH2C12) 
lit I1d 

[a]; = - 8.9 (csl.3, CHCM 

. = - 5.8. @O-5, E1OH) lit.‘q = - 7.6 (c=O.5, CHCis) lit.‘&) = - 62.0, $=1-O, CH&l2) 

To introduce a carbon substituent at C(2) of imines 10, we envisaged the addition of organocerium 

reagents, prepared by ultrasonication of CeCl3/RLi I:l-mixtures in THF at 0’. 12) Hence, heating N- 

hydroxypiperidine 4a with NaH, followed by addition of in situ prepared “MeCeCl2” (IO mol-equiv.) in THF 

(-78O, 3 h, then -. r.t.. I6 h) and workup with aq. Na3EDTA provided the C(2,6)-trans-disubstituted 

piperidine alkaloid (-)-solenopsin A (12a 13), 54% from 48). identified as its hydrochloride salt (Figure 1). 

None of its c&isomer was found in the reaction mixture. 

Extension of the “oxazetidin-4-one route” to the flexible preparation of enantiomerically pure 

pyrrolidines was straightforward (Table 2, entries 4-6). Successive treatment of N-hydroxypyrrolidine 4c 

with NaH and i-Bu2AlH afforded (R)-2-heptylpyrrolidine llc 14) {[aID= -15.5 (c=l.l6, CHC13); lit.14): 

-15.7 (CHCl3). 64% from 4~). Intercepting transient imine 10c with the “n-BuLi/CeCl3 reagent” (II mol- 

equiv.) furnished (-)-solenopsis fugax venom 12~ 15) ([aID= -7.5 (~10.7, MeOH), 60% from 4~). easily 

separated from its minor (7%) 2,5-&s-isomer (FC) and characterized as its phenylsulfonamide 13 (Figure 1). 

Similar addition of the organocerium nucleophile obtained from 3-butenylmagnesium bromide and CeC13 

to imine 1Oc yielded trans-disubstituted pyrrolidine 12d g, ([aID = -4.9 (c-1.6. CH2CI2). 48% from 4~). N- 

Benzyloxycarbonylation of 12d, Wacker oxidation, stirring of the resulting methyl ketone 14 with H2/Pd-C 

in MeOH (I atm., r.t., 20 h) and removal (FC) of the minor C(S)-epimer of 16 gave the pyrrolixidine 

alkaloid (-)-xenovenine 15 16) (Scheme 3). 

Scheme 3 H 

#+ RNR cx 

1) CbzCI, Na&Oa 
2) PdCl2, CUCI, 0, 

H2 /P&C 

60% 0, 
R R 

MeOH, r.t. 8ff 

F? 

+ 7% 

c1 

,*6 

k 
n G&s 

t 

Y 
73% W-b 

SNR C(5) epimer 

cbz 
5 3 

” w15 

I 

0 

12d 14d 
(_l-Emins (15) 
[aIF = - 11.6, (c= 0.6, CHCb) 
lit.lbc) = - 11.5, (o 0.5, CHCls) 

Further applications and extensions of this novel tandem deoxygenative decarboxylation/imine trapping 

reaction are presently being explored in our laboratory. 
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